Constructive Neural Networks in Forecasting Weekly River Flow
نویسنده
چکیده
This paper presents an constructive neural network model for seasonal streamflow forecasting. This Surface water hydrology is basic to the design and operation of the reservoir. A good example is the operation of a reservoir with an uncontrolled inflow but having a means of regulating the outflow. If information on the nature of the inflow is determinable in advance, then the reservoir can be operated by some decision rule to minimize downstream flood damage. For this reasons, several companies in the Brazilian Electrical Sector use the linear time-series models such as PARMA (Periodic Auto regressive Moving Average) models developed by Box-Jenkins. This paper provides for river flow prediction a numerical comparison between neural networks, called non-linear sigmoidal regression Blocks networks (NSRBN) and PARMA models. The model was implemented to forecast weekly average inflow on an step-ahead basis. It was tested on four hydroelectric plants located in different river basins in Brazil. The results obtained in the evaluation of the performance of NSRBN were better than the results obtained with PARMA models.
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملEvaluation of the Neuro-Fuzzy and Hybrid Wavelet-Neural Models Efficiency in River Flow Forecasting (Case Study: Mohmmad Abad Watershed)
One of the most important issues in watersheds management is rainfall-runoff hydrological process forecasting. Using new models in this field can contribute to proper management and planning. In addition, river flow forecasting, especially in flood conditions, will allow authorities to reduce the risk of flood damage. Considering the importance of river flow forecasting in water resources ma...
متن کامل"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River
The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...
متن کاملRiver Flow Forecasting using Recurrent Neural Networks
Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently, Artificial Neural Networks (ANNs) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANNs to foreca...
متن کاملForecasting Hydrologic Time Series Using Artificial Neural Networks
Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently Artificial Neural Networks (ANN) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANN to forecast ...
متن کامل